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Vision:	Enabling	High	Performance	pub/sub	I/O

• Create a high performance I/O 
abstraction to allow for on-line 
memory/file data subscription service

• Create an abstraction for self-
describing I/O for files, streams, etc.
• Work at all scales (laptops, desktops, 

clusters, exascale-platforms)

• Scale out to the number of nodes, 
sites, timesteps, variables, etc.

S. Klasky, M. Wolf, M. Ainsworth, C. Atkins, J. Choi, G. Eisenhauer, B. Geveci, W. Godoy, et al., A View from ORNL: Scientific Data Research Opportunities in the Big 
Data Age in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), IEEE, pp. 1357–1368.



Co-design	the	next	set	of	tools	for	federated	computing	

• The convergence of large DOE 
instruments with HPC centers 
dictates that we need to allow 
coupling/streaming
– Codesign of what occurs at the 

edge and at HPC centers is 
imperative

– Integration of ML/AI with HPC is 
essential to process as much data

Foster, Ian, Mark Ainsworth, Bryce Allen, Julie Bessac, Franck Cappello, Jong Youl Choi, Emil Constantinescu et al. "Computing just what you need: Online data analysis and reduction 
at extreme scales." In European Conference on Parallel Processing, pp. 3-19. Springer, Cham, 2017.



Software	we	need	to	enable	our	application	use-cases
• Workflow system
– To coupled” applications, submit the jobs on any system, and to monitor the job

• A Data management system 
– To get/put data to/from one or more consumers to on or more producers 
– To track the provenance and performance of the workflow 
– To write/read data to the storage layer along with pub/sub to multiple consumers

• Data compression/reduction
– Which can take user Quantiles of Interest and preserve those within an error bound

• Analysis and Visualization services which can be incorporated into the workflow
– Fast, Scalable, and memory efficient 

• A Dashboard to allow scientist to collaborate during a running experiment/simulation
– Web based, user configurable



Software	we	need	to	enable	our	application	use-cases
• Workflow system
– EFFIS, or any other (e.g. EnTK, Kepler, Pegasus, Swift, ..)

• A Data management system 
– ADIOS, …

• Data compression/reduction
– MGARD, SZ, ZFP, blosc, …

• Analysis and Visualization services which can be incorporated into the workflow
– VTK-m, pbdR, Visit, Paraview, anaconda …

• A Dashboard to allow scientist to collaborate during a running experiment/simulation
– Kdash, ..



The	new	demands	from	applications



Simulations	– Storage:	Seismic	Tomography	Workflow	(PBs	of	data/run)

Scientific Achievement
• Most detailed 3-D model of Earth’s interior showing the entire globe from the 

surface to the core–mantle boundary, a depth of 1,800 miles

Significance and Impact
• First global seismic model where no approximations were used to simulate 

how seismic waves travel through the Earth.

• Over 1 PB of data was generated in a 6 hour simulation (on Titan@OLCF)

Research Details
• To improve data movement and flexibility, the Adaptable Seismic Data Format 

(ASDF) was developed that leverages the Adaptable I/O System (ADIOS) 
parallel library

• ASDF allows for recording, reproducing, and analyzing data on large-scale 
supercomputers

• 1.5 PB of data is produced in a single workflow step, which is fully processed 
later in another step

E. Bozdag; D. Peter; M. Lefebvre; D. Komatitsch; J. Tromp; J. Hill; N. Podhorszki; D. Pugmire., Global adjoint tomography:
first-generation model. Geophysical Journal International 2016 207 (3): 1739-1766



Simulations	- Code	coupling:	ECP	WDM	- High-Fidelity	Whole	
Device	Modeling	of	Magnetically	Confined	Fusion	Plasmas
• Different physics solved in different physical regions of detector 

(spatial coupling)

• Core simulation: GENE
Edge simulation: XGC
Separate teams, separate codes

• Recently demonstrated first-ever successful kinetic coupling of this kind

• Data Generated by one coupled simulation is predicted to be > 10 PB/day on Summit

J. Dominski; S. Ku; C.-S. Chang; J. Choi; E. Suchyta; S. Parker; S. Klasky; A. Bhattacharjee; Physics of Plasmas 2018, 25, DOI: 10.1063/1.5044707

PI: A. Bhattacharjee, PPPL,
C. S. Chang, PPPL

Core-edge
coupling



KSTAR Data 
Stream

EFIT magnetic 
reconstructions 
(0D magnetic)

ECEi Synthetic Diagnostic

ECEi FFT/Wavelet 
Decomposition

MCMC based integration data fusion
(2D ECEi, soft-xrays, etc.)

Machine learning based 
mode classifier

Correlation analysis:
!Β# and 𝛽#

Parameter based, 
reduced model 

comparison 
(1D ECEi)

Campaign Storage

Parameter based, reduced 
model comparison (2D ECEi)

Fusion WDM ECP App
(XGC, GENE, M3D-C1, RF, EP)
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Experimental	data	streaming	from	KSTAR	to	OLCF/NERSC

Choi, Jong Y., et al. "Icee: Wide-area in transit data processing framework for near real-time scientific applications." 4th SC Workshop on Petascale (Big) Data Analytics: Challenges and 
Opportunities in conjunction with SC13. Vol. 11. 2013.



Observational	data:	SKA
– The full SKA will use a million antennas to enable astronomers

to monitor the sky in unprecedented detail and survey the
entire sky much faster than any system currently in existence

– One of SKA’s greatest challenges is in the ability to 
move, process, and store data, without losing information

– The data output of the SKA is limited by the 
achievable I/O bandwidth

Wang, Ruonan, Christopher Harris, and Andreas Wicenec. "AdiosStMan: parallelizing casacore table data system using adaptive IO system." Astronomy and computing 16 (2016): 146-
154.



EFFIS	2.0:	an	End-to-end	Framework	For	coupling	
Integrated	Simulations	
• Why EFFIS?
– To simplify the complexity of composing, running, and monitoring 

applications on HPC systems

• What is EFFIS
– A collection of services to compose, launch, monitor, and control 

coupled applications

• How does EFFIS work
– Contains new services to “easily” compose coupled HPC applications 

on HPC Resources using a python-like interface
• Cori, Theta, Titan, Summit

– Allows “easy” integration to visualization tools (Visit, Python 
notebooks, etc.)

– ADIOS for data movement
Cummings, J., A. Pankin, N. Podhosrzki, G. Park, S. Ku, R. Barreto, S. Klasky et al. "Plasma edge kinetic-MHD modeling in tokamaks using Kepler workflow for code coupling, data management and 
visualization." Communications in Computational Physics 4, no. 3 (2008): 675-702.

EFFIS



I/O	Framework	for	Data	Intensive	Science

• Problem 
– I/O is severely bottlenecked on HPC systems and experiments because of hardware limitations
– New I/O patterns from code coupling, AI/ML, simulations require new solutions

• Solution
– ADIOS is a DOE framework developed for sustainable I/O on Leadership Class Facilities (LCF) 
– ADIOS is an publication/subscribe I/O framework for storage and in situ processing of data

• Impact
– Over 10X I/O improvement from previous I/O methods on dozens of LCF apps

– Used by more than 30 LCF application areas, totaling over 1B hours on the LCFs, 
– Outside DOE: Used in Industrial Engineering, Oil Exploration, Computational Fluid Dynamics
– ADIOS won R&D 100 Award in 2013
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ADIOS	Approach:	“How”
• I/O calls are of declarative nature in ADIOS
– which process writes what: add a local array into a global space (virtually)
– adios_close() indicates that the user is done declaring all pieces that go into the 

particular dataset in that timestep
• I/O strategy is separated from the user code
– aggregation, number of sub-files, target file-system hacks, and final file format not 

expressed at the code level
• This allows users to choose the best method available on a system without modifying 

the source code
• This allows developers
– to create a new method that’s immediately available to applications
– to push data to other applications, remote systems or cloud storage instead of a 

local filesystem

Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, et al. Hello ADIOS: the challenges and lessons of developing leadership 
class I/O frameworks. Concurrency and Computation: Practice and Experience 2014, 26, 1453–1473.



Changing	from	C/R	data	to	visualization/analysis	data	is	“easy”

• One change in the code or input file, to specify the engine
adios2::Engine writer = 
io.Open("analysis.bp",
adios2::Mode::Write);

writer.BeginStep()

writer.Put(varT, T.data());

writer.EndStep()

writer.Close()
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Metadata	challenges	in	big	scientific	data	management
• Creating “containers” to store all of the data

products, code, workflow, performance,
“raw data” allows scientist to better
understand their campaign

• As scientist continue to save data products
from their simulations/experiments, the
amount of variables grow

• The cost of managing the metadata from all
the data produced in the scientific process
can grow to be “painful” for scientist

• There is a large overhead of generating and
managing the metadata grows with number of
data objects (variables, attributes), number of
processes, number of simulation steps

L. Wan, K. Mehta, S. Klasky, M. Wolf, H. Wang, W. Wang, J. Li, Z. Lin, Data Management Challenges of Exascale Scientific A case study with the Gyrokinetic Toroidal Code and 
ADIOS, ICCM 2019.



Numerical	data	is	challenging	to	compress	losslessly (P.	Lindstrom)

Lindstrom, Peter. "Fixed-rate compressed floating-point arrays." IEEE transactions on visualization and computer graphics 20.12 (2014): 2674-2683.

1.11
1.07 1.05 1.04 1.03 1.02 1.01

[L
in
ds

tr
om

'0
6]

[A
lte

d
'0
9]

[B
ur
ts
ch

er
'0
7]

[B
ur
ts
ch

er
'16

]

1.0

0.8

0.6

0.4

0.2

0.0

1.2

2.0

1.8

1.6

1.4

fpzip BLOSC FPC gzip szip SPDP bzip2

co
m

pr
es

si
on

 ra
tio

 (u
nc

om
p.

/c
om

p.
si

ze
)



MGARD:	MultiGrid	Adaptive	Reduction	of Data
Decomposes	data	into	contributions	from	a hierarchy	of
meshes,

Applicable	to	structured	(tensor	product)	grids with
arbitrary	spacing,	integrated	into ADIOS
Able	to	preserve	quantities	of	interest	(spectrum, averages...)

Adaptive	reduction	of	data	based	on	discarding	least
important	contributions

Mathematically	proven	error bounds

where
Illustration	of	a	tensor	product	mesh hierarchy

MGARD	decomposition	and	recomposition workflow

M. Ainsworth, S. Klasky, B. Whitney. Compression using lossless decimation: analysis and application. SIAM Journal on
Scientific Computing 2017, 39, B732–B757.

M. Ainsworth, O. Tugluk, B. Whitney, S. Klasky, “Multilevel Techniques for Compression and Reduction of Scientific Data --
The Multivariate Case”, SIAM Journal on Scientific Computing, Submitted for publication 2018.

M. Ainsworth, O. Tugluk, B. Whitney, S. Klasky. Multilevel techniques for compression and reduction of scientific data-
Quantitative control of accuracy in derived quantities. SIAM Journal on Scientific Computing 2019, TBD, TBD.



MGARD:	MultiGrid	Adaptive	Reduction	of Data
• MGARD can preserve quantities of interest specified 
by users
• This can be done by specifying a smoothness 
parameter (e.g. s=-1/2 for averages/blobs, -1 for
streamlines),…

• E.g. a user can supply a routine to compute a 
functional Maximum resolved wave number in energy 
spectra can be supplied as

Effects	of	MGARD	compression	on
turbulent	energy spectra.

Compression of S3D 
combustion data

𝑄 𝑢 − 𝑄()𝑢) ≤ 𝑟- 𝑢 − )𝑢 𝑠

𝑄 𝑢 − 𝑄 )𝑢 = 𝑄 𝑢 − )𝑢 ≤ 𝑟01 𝑄 𝑢 − )𝑢 𝐿∞



Puncture	plot
• Can we reduce data from a fusion code of the magnetic field vector (65x257x161) and 

still compute accurate puncture plots?

• Trajectories depend on
• 𝑄4 𝑣 = ∫78

789: 𝑣( )𝑥 𝑡 𝑑𝑡

• Continuous linear functional
• 𝑄 𝑢 − )𝑢 ≤ 𝑟- 𝑄 𝑢 − )𝑢 𝑠

• For s=(d-1)/2 in d-dimensions
• Here d=3, so take s=1
• Hence, we apply reduction

where control loss 𝑢 − )𝑢 𝑠
MARK AINSWORTH, OZAN TUGLUK, BEN WHITNEY, AND SCOTT KLASKY, MULTILEVEL TECHNIQUES FOR COMPRESSION AND 
REDUCTION OF SCIENTIFIC DATA—QUANTITATIVE CONTROL OF ACCURACY IN DERIVED QUANTITIE, accepted to SIAM J. Scientific 
Computing, 2019.

No Compression MGARD 100X (SZ, ZFP 100X)



Why	In	situ

• Timeliness (Resources)
• Reduction… save information, not all the data

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar, N. Podhorszki,
K. Schwan, M. Wolf, PreDatA–preparatory data analytics on peta-scale machines in Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, IEEE, pp. 1–12.



Rich	Design	Space	for	Staging
• Location of the compute resources
– Same cores as the simulation (in situ)

– Some (dedicated) cores on the same nodes

– Some dedicated nodes on the same machine 

– Dedicated nodes on an external resource

• Data access, placement, and persistence
–Direct access to simulation data structures

– Shared memory access via hand-off / copy

– Shared memory access via non-volatile near node storage (NVRAM, BB)

–Data transfer to dedicated nodes or external resources (decoupled in space)

• Synchronization and scheduling
– Execute synchronously with simulation every nth simulation time step

– Execute asynchronously (decoupled in time)

– Dynamic execution
C. Docan, M. Parashar, S. Klasky. Dataspaces: an interaction and coordination framework for coupled 
simulation workflows. Cluster Computing 2012, 15, 163–181.

Processing data on remote nodesUsing distinct cores on same node

Sharing cores with the simulation
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Data	Staging	in	ADIOS
• Sustainable Staging Transport (SST)
– In situ infrastructure for staging in a streaming-like fashion

using RDMA, SOCKETS with “active” connect/disconnect
• InSituMPI
– One way staging for MPMD applications, for strong coupling

• DataMan
– WAN transfers using sockets and ZeroMQ for EO data

• SST-SM
– Staging infrastructure providing a shared memory abstraction for coupling on 

shared nodes
• InSitu-sync
– Synchronous in situ, direct pass through of data structures to analytics

F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S. Klasky, N. Podhorszki, In-situ I/O processing: a case for location flexibility in Proceedings of the 
sixth workshop on Parallel Data Storage, ACM, pp. 37–42.

Use a combination of ADIOS Staging 
methods



In-line	vs.	In-transit	Visualization	Techniques	at	Scale

• Scientific workflows are complex
– Numerous analysis and visualization tasks need to be coordinated

– Inefficiency = less scientific insight, longer simulation times, larger cost

• Choosing the in situ strategy can be complex
– Overheads of in situ visualizations are not well understood

• Study some examples from a Cloverleaf3D MiniApp
– What configuration will impact the simulation time the least?

– What configuration will be most cost effective, at scale?

• Study two visualization algorithms: Isocontour, and rendering

J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky, H. Childs, D. Pugmire, Comparing the Efficiency of In Situ Visualization Paradigms at Scale, 
ISC 19, Frankfurt Germany, June 2019 (In submission)



Placement	for	Visualization	Services

• Placement of services has a dramatic 
impact on performance
• Algorithms with communication (e.g. 

parallel rendering) exhibit poor 
performance at scale
• Move data to staging resource improves 

scalability of visualization services

• Visualizing every “Nth” step provides 
improves scalability of smaller resources

See: Comparing the Efficiency of In Situ Visualization Paradigms at 
Scale, to appear, ISC 2019, Frankfurt Germany. J Kress, M Larsen, J Choi, 
M Kim, M Wolf, N Podhorszki, S Klasky, H Childs, D Pugmire.

1250

1750

2250

2750

3250

128 256 512 1024 2048 4096 8192 16384

In Situ Visualization and Resource Usage

  Small
Resource
  Med
Resource
  Large
Resource
  Inline

  App

Ti
m

e 
(s

)

300

800

1300

1800

2300

2800

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

In Situ Visualization with Step Skipping
Small Resource

Small Resource
Skip 3

Inline

Inline Skip 3

App

Poor 
scalability

Scales closer 
to application

Scalability impact 
of reduced 
frequency

Ti
m

e 
(s

)



F Put

XGC	Analysis	– moving	from	synchronous	to	staged	in	situ
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• InSituMPI utilize zero-copy method
• Share data to minimize data copies
• Calculations (1-4) are embarrassingly parallel 

routines
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New	Developments	in	Scalable	Analytics	with	R	

New GPU Capabilities 

• New ML methods optimized for Summit GPUs

• Addresses the CORAL 2 benchmarks 

• Fast random generators from 6 common distributions 

• Bindings for NVIDIA Management Library (NVML)

• Infrastructure for low-level "roll your own" CUDA primitives

pbdR is R plus…

● More numerical methods

● Large parallel computing

● GPU infrastructure

● I/O tools , advanced profilers , remote computing

pbdR
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Visualization	Services	with	
• Analysis and visualization (1D,2D,3D) are 

needed to feed a scientific dashboard
• Services are lightweight, configurable 

components within a scientific workflow
• VTKm is a visualization toolkit aimed at 

the heterogenous architectures of 
supercomputers
– Architecture supports “write once run 

anywhere” required by visualization services

• Support for large number of key 
algorithms:
– Isocontour, slice, histogram, streamline, 

rendering, …

Performance-Portable Particle Advection with VTK-m, D Pugmire, A Yenpure, M Kim, J Kress, R Maynard, H Childs, B Hentschel. EGPGV, 2018

Portable Performance of Particle 
Advection: The VTKm implementation was 
shown to be comparable in performance to 
custom CPU and GPU implementations



MongoDB

Girder
(CherryPy)

HTML5 
client

Ingest
(Python)

Fetch images 
and metadata 
from simulation 
via HTTP

XGC dpot.core T=259 XGC dpot.edge T=259

XGC C_dpot T=259 XGC C_dpot T=202

XGC streamers T=259
xgc-dashboard.olcf.gov

XGC B-extent T=259

kdash



Summary:	Co-design	the	next	set	of	tools	for	federated	computing	

• The convergence of large DOE
instruments with HPC centers
dictates that we need to allow
coupling/streaming
– Codesign of what occurs at the

edge and at HPC centers is
imperative

– Integration of ML/AI with HPC is
essential to process more data

• https://github.com/CODARcode/MGARD
• https://github.com/ornladios/ADIOS2
• https://gitlab.kitware.com/vtk/vtk-m
• https://pbdr.org/packages.html
• https://Adios.ornl.gov
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